Capítulo 6 Árboles

6.1 Definición

Árbol
Árbol

Un árbol es una estructura no lineal en la que cada nodo puede apuntar a uno o varios nodos.

También se suele dar una definición recursiva: un árbol es una estructura en compuesta por un dato y varios árboles.

Esto son definiciones simples. Pero las características que implican no lo son tanto.

Definiremos varios conceptos. En relación con otros nodos:

  • Nodo hijo: cualquiera de los nodos apuntados por uno de los nodos del árbol. En el ejemplo, 'L' y 'M' son hijos de 'G'.
  • Nodo padre: nodo que contiene un puntero al nodo actual. En el ejemplo, el nodo 'A' es padre de 'B', 'C' y 'D'.

Los árboles con los que trabajaremos tienen otra característica importante: cada nodo sólo puede ser apuntado por otro nodo, es decir, cada nodo sólo tendrá un padre. Esto hace que estos árboles estén fuertemente jerarquizados, y es lo que en realidad les da la apariencia de árboles.

En cuanto a la posición dentro del árbol:

  • Nodo raíz: nodo que no tiene padre. Este es el nodo que usaremos para referirnos al árbol. En el ejemplo, ese nodo es el 'A'.
  • Nodo hoja: nodo que no tiene hijos. En el ejemplo hay varios: 'F', 'H', 'I', 'K', 'L', 'M', 'N' y 'O'.
  • Nodo rama: aunque esta definición apenas la usaremos, estos son los nodos que no pertenecen a ninguna de las dos categorías anteriores. En el ejemplo: 'B', 'C', 'D', 'E', 'G' y 'J'.

Otra característica que normalmente tendrán nuestros árboles es que todos los nodos contengan el mismo número de punteros, es decir, usaremos la misma estructura para todos los nodos del árbol. Esto hace que la estructura sea más sencilla, y por lo tanto también los programas para trabajar con ellos.

Tampoco es necesario que todos los nodos hijos de un nodo concreto existan. Es decir, que pueden usarse todos, algunos o ninguno de los punteros de cada nodo.

Un árbol en el que en cada nodo o bien todos o ninguno de los hijos existe, se llama árbol completo.

En una cosa, los árboles se parecen al resto de las estructuras que hemos visto: dado un nodo cualquiera de la estructura, podemos considerarlo como una estructura independiente. Es decir, un nodo cualquiera puede ser considerado como la raíz de un árbol completo.

Existen otros conceptos que definen las características del árbol, en relación a su tamaño:

  • Orden: es el número potencial de hijos que puede tener cada elemento de árbol. De este modo, diremos que un árbol en el que cada nodo puede apuntar a otros dos es de orden dos, si puede apuntar a tres será de orden tres, etc.
  • Grado: el número de hijos que tiene el elemento con más hijos dentro del árbol. En el árbol del ejemplo, el grado es tres, ya que tanto 'A' como 'D' tienen tres hijos, y no existen elementos con más de tres hijos.
  • Nivel: se define para cada elemento del árbol como la distancia a la raíz, medida en nodos. El nivel de la raíz es cero y el de sus hijos uno. Así sucesivamente. En el ejemplo, el nodo 'D' tiene nivel 1, el nodo 'G' tiene nivel 2, y el nodo 'N', nivel 3.
  • Altura: la altura de un árbol se define como el nivel del nodo de mayor nivel. Como cada nodo de un árbol puede considerarse a su vez como la raíz de un árbol, también podemos hablar de altura de ramas. El árbol del ejemplo tiene altura 3, la rama 'B' tiene altura 2, la rama 'G' tiene altura 1, la 'H' cero, etc.

Los árboles de orden dos son bastante especiales, de hecho les dedicaremos varios capítulos. Estos árboles se conocen también como árboles binarios.

Frecuentemente, aunque tampoco es estrictamente necesario, para hacer más fácil moverse a través del árbol, añadiremos un puntero a cada nodo que apunte al nodo padre. De este modo podremos avanzar en dirección a la raíz, y no sólo hacia las hojas.

Es importante conservar siempre el nodo raíz ya que es el nodo a partir del cual se desarrolla el árbol, si perdemos este nodo, perderemos el acceso a todo el árbol.

El nodo típico de un árbol difiere de los nodos que hemos visto hasta ahora para listas, aunque sólo en el número de nodos. Veamos un ejemplo de nodo para crear árboles de orden tres:

struct nodo {
   int dato;
   struct nodo *rama1;
   struct nodo *rama2;
   struct nodo *rama3;
};

O generalizando más:

#define ORDEN 5

struct nodo {
   int dato;
   struct nodo *rama[ORDEN];
};

6.2 Declaraciones de tipos para manejar árboles en C

Para C, y basándonos en la declaración de nodo que hemos visto más arriba, trabajaremos con los siguientes tipos:

typedef struct _nodo {
   int dato;
   struct _nodo *rama[ORDEN];
} tipoNodo;

typedef tipoNodo *pNodo;
typedef tipoNodo *Arbol;

Al igual que hicimos con las listas que hemos visto hasta ahora, declaramos un tipo tipoNodo para declarar nodos, y un tipo pNodo para es el tipo para declarar punteros a un nodo.

Arbol es el tipo para declarar árboles de orden ORDEN.

Árbol de orden n
Árbol de orden n

El movimiento a través de árboles, salvo que implementemos punteros al nodo padre, será siempre partiendo del nodo raíz hacia un nodo hoja. Cada vez que lleguemos a un nuevo nodo podremos optar por cualquiera de los nodos a los que apunta para avanzar al siguiente nodo.

En general, intentaremos que exista algún significado asociado a cada uno de los punteros dentro de cada nodo, los árboles que estamos viendo son abstractos, pero las aplicaciones no tienen por qué serlo. Un ejemplo de estructura en árbol es el sistema de directorios y ficheros de un sistema operativo. Aunque en este caso se trata de árboles con nodos de dos tipos, nodos directotio y nodos fichero, podríamos considerar que los nodos hoja son ficheros y los nodos rama son directorios.

Otro ejemplo podría ser la tabla de contenido de un libro, por ejemplo de este mismo curso, dividido en capítulos, y cada uno de ellos en subcapítulos. Aunque el libro sea algo lineal, como una lista, en el que cada capítulo sigue al anterior, también es posible acceder a cualquier punto de él a través de la tabla de contenido.

También se suelen organizar en forma de árbol los organigramas de mando en empresas o en el ejército, y los árboles genealógicos.

6.3 Operaciones básicas con árboles

Salvo que trabajemos con árboles especiales, como los que veremos más adelante, las inserciones serán siempre en punteros de nodos hoja o en punteros libres de nodos rama. Con estas estructuras no es tan fácil generalizar, ya que existen muchas variedades de árboles.

De nuevo tenemos casi el mismo repertorio de operaciones de las que disponíamos con las listas:

  • Añadir o insertar elementos.
  • Buscar o localizar elementos.
  • Borrar elementos.
  • Moverse a través del árbol.
  • Recorrer el árbol completo.

Los algoritmos de inserción y borrado dependen en gran medida del tipo de árbol que estemos implementando, de modo que por ahora los pasaremos por alto y nos centraremos más en el modo de recorrer árboles.

6.4 Recorridos por árboles

El modo evidente de moverse a través de las ramas de un árbol es siguiendo los punteros, del mismo modo en que nos movíamos a través de las listas.

Esos recorridos dependen en gran medida del tipo y propósito del árbol, pero hay ciertos recorridos que usaremos frecuentemente. Se trata de aquellos recorridos que incluyen todo el árbol.

Hay tres formas de recorrer un árbol completo, y las tres se suelen implementar mediante recursividad. En los tres casos se sigue siempre a partir de cada nodo todas las ramas una por una.

Supongamos que tenemos un árbol de orden tres, y queremos recorrerlo por completo.

Partiremos del nodo raíz:

RecorrerArbol(raiz);

La función RecorrerArbol, aplicando recursividad, será tan sencilla como invocar de nuevo a la función RecorrerArbol para cada una de las ramas:

Árbol
Árbol
void RecorrerArbol(Arbol a) {
   if(a == NULL) return;
   RecorrerArbol(a->rama[0]);
   RecorrerArbol(a->rama[1]);
   RecorrerArbol(a->rama[2]);
}

Lo que diferencia los distintos métodos de recorrer el árbol no es el sistema de hacerlo, sino el momento que elegimos para procesar el valor de cada nodo con relación a los recorridos de cada una de las ramas.

Los tres tipos son:

Pre-orden

En este tipo de recorrido, el valor del nodo se procesa antes de recorrer las ramas:

void PreOrden(Arbol a) {
   if(a == NULL) return;
   Procesar(dato);
   RecorrerArbol(a->rama[0]);
   RecorrerArbol(a->rama[1]);
   RecorrerArbol(a->rama[2]);
}

Si seguimos el árbol del ejemplo en pre-orden, y el proceso de los datos es sencillamente mostrarlos por pantalla, obtendremos algo así:

A B E K F C G L M D H I J N O

In-orden

En este tipo de recorrido, el valor del nodo se procesa después de recorrer la primera rama y antes de recorrer la última. Esto tiene más sentido en el caso de árboles binarios, y también cuando existen ORDEN-1 datos, en cuyo caso procesaremos cada dato entre el recorrido de cada dos ramas (este es el caso de los árboles-b):

void InOrden(Arbol a) {
   if(a == NULL) return;
   RecorrerArbol(a->rama[0]);
   Procesar(dato);
   RecorrerArbol(a->rama[1]);
   RecorrerArbol(a->rama[2]);
}

Si seguimos el árbol del ejemplo en in-orden, y el proceso de los datos es sencillamente mostrarlos por pantalla, obtendremos algo así:

K E B F A L G M C H D I N J O

Post-orden

En este tipo de recorrido, el valor del nodo se procesa después de recorrer todas las ramas:

void PostOrden(Arbol a) {
   if(a == NULL) return;
   RecorrerArbol(a->rama[0]);
   RecorrerArbol(a->rama[1]);
   RecorrerArbol(a->rama[2]);
   Procesar(dato);
}

Si seguimos el árbol del ejemplo en post-orden, y el proceso de los datos es sencillamente mostrarlos por pantalla, obtendremos algo así:

K E F B L M G C H I N O J D A

6.5 Eliminar nodos en un árbol

El proceso general es muy sencillo en este caso, pero con una importante limitación, sólo podemos borrar nodos hoja:

El proceso sería el siguiente:

  1. Buscar el nodo padre del que queremos eliminar.
  2. Buscar el puntero del nodo padre que apunta al nodo que queremos borrar.
  3. Liberar el nodo.
  4. padre->nodo[i] = NULL;.

Cuando el nodo a borrar no sea un nodo hoja, diremos que hacemos una "poda", y en ese caso eliminaremos el árbol cuya raíz es el nodo a borrar. Se trata de un procedimiento recursivo, aplicamos el recorrido PostOrden, y el proceso será borrar el nodo.

El procedimiento es similar al de borrado de un nodo:

  1. Buscar el nodo padre del que queremos eliminar.
  2. Buscar el puntero del nodo padre que apunta al nodo que queremos borrar.
  3. Podar el árbol cuyo padre es nodo.
  4. padre->nodo[i] = NULL;.

En el árbol del ejemplo, para podar la rama 'B', recorreremos el subárbol 'B' en postorden, eliminando cada nodo cuando se procese, de este modo no perdemos los punteros a las ramas apuntadas por cada nodo, ya que esas ramas se borrarán antes de eliminar el nodo.

De modo que el orden en que se borrarán los nodos será:

K E F y B

6.6 árboles ordenados

A partir del siguiente capítulo sólo hablaremos de árboles ordenados, ya que son los que tienen más interés desde el punto de vista de TAD, y los que tienen más aplicaciones genéricas.

Un árbol ordenado, en general, es aquel a partir del cual se puede obtener una secuencia ordenada siguiendo uno de los recorridos posibles del árbol: inorden, preorden o postorden.

En estos árboles es importante que la secuencia se mantenga ordenada aunque se añadan o se eliminen nodos.

Existen varios tipos de árboles ordenados, que veremos a continuación:

  • árboles binarios de búsqueda (ABB): son árboles de orden 2 que mantienen una secuencia ordenada si se recorren en inorden.
  • árboles AVL: son árboles binarios de búsqueda equilibrados, es decir, los niveles de cada rama para cualquier nodo no difieren en más de 1.
  • árboles perfectamente equilibrados: son árboles binarios de búsqueda en los que el número de nodos de cada rama para cualquier nodo no difieren en más de 1. Son por lo tanto árboles AVL también.
  • árboles 2-3: son árboles de orden 3, que contienen dos claves en cada nodo y que están también equilibrados. También generan secuencias ordenadas al recorrerlos en inorden.
  • árboles-B: caso general de árboles 2-3, que para un orden M, contienen M-1 claves.